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SUMMARY

The conditions for the emergence and stability of �nite amplitude purely elastic (non-inertial) over-
stability are examined for axisymmetric Taylor–Couette �ow of an Oldroyd-B �uid in the narrow-gap
limit. The study is a detailed account of the formulation and results published previously [Khayat, Phys.
Rev. Lett. 1997; 78:4918]. The �ow �eld is obtained as a truncated Fourier representation for velocity,
pressure and stress in the axial direction, and in terms of symmetric and antisymmetric Chandrasekhar
functions along the radial direction. The Galerkin projection of the various modes onto the conservation
and constitutive equations leads to a closed low-dimensional nonlinear dynamical system with 20◦ of
freedom. In contrast to our previous model that was based on the simplifying rigid-free boundary con-
ditions [Khayat, Phys. Fluids A 1995; 7:2191], the present formulation incorporates the more realistic
rigid–rigid boundary conditions, and is capable of capturing quantitatively the �ow sequence observed
in the experiment of Muller et al. [J. Non-Newtonian Fluid Mech. 1993; 46:315] for a highly elastic
(Boger) �uid under conditions of negligible inertia. Existing linear analysis results are �rst recovered
by the present formulation, which predict the exchange of stability between the circular Couette �ow
and oscillatory Taylor vortex �ow via a postcritical Hopf bifurcation as the Deborah number exceeds
a critical value. The stability conditions of the limit cycle are determined using the method of multiple
scales. The present nonlinear theory predicts, as experiment suggests, the growth of oscillation amplitude
of the velocity and the emergence of higher harmonics in the power spectrum as the Deborah number
increases. Good agreement is obtained between theory and experiment. Copyright ? 2002 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The existence of purely elastic overstable �ow for a �uid rotating between two concentric
circular cylinders has been established from linear stability analysis, but a theory has yet to
be found that reproduces quantitatively the evolution of �nite amplitude �ow in the post-
critical range observed experimentally. The purpose of the present study is to show that a
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low-dimensional dynamical systems approach can be e�ectively used to predict accurately the
�ow of highly elastic �uids. The experiments of Muller et al. [1] indicate a dramatic departure
in the stability and bifurcation pictures for the Taylor–Couette �ow of such �uids, in com-
parison to Newtonian �uids. While the loss of stability of the circular Couette �ow (CF) of
a Newtonian �uid is inertia driven, that of a viscoelastic �uid can be of purely elastic origin.
For a Newtonian �uid, it is observed that at a su�ciently small Reynolds number, Re,

there is a unique stationary CF, which is globally stable. When Re exceeds a critical value,
Rec, the stationary �ow loses its stability and develops a regular cellular vortex structure in
which closed ring vortices alternating in sign are wrapped round the axis of rotation. In the
postcritical range of Reynolds numbers, the �ow remains essentially time independent and
axisymmetric. This is the well-known Taylor vortex �ow (TVF) after Taylor who was the
�rst to examine this �ow regime both theoretically and experimentally [2]. At some higher
Re value, the stationary cellular structure loses its stability, in turn, to another structure with
a di�erent number of vortices [3; 4]. The upper limit of the TVF regime coincides with the
emergence of time-dependent �ow and the breaking of axisymmetry. Simultaneously, there
appears a uniformly rotating pattern, or wavy vortex �ow (WVF), of tangential azimuthal
traveling waves superimposed on the cellular structure of TVF [5].
For viscoelastic �ows, most experiments have been carried out for polmeric solutions,

which are often designated as Boger �uids [6, 7]. These are highly elastic �uids with constant
(shear independent) viscosity. For such �uids, elastic normal stresses (which lead to the well-
known Weissenberg rod-climbing phenomenon) prohibit the onset of steady TVF as inertia
is dominated by elastic e�ects; instead, an oscillatory TVF sets in. Recent experiments were
carried out by Muller et al. [1] under conditions of vanishingly small Reynolds number, and
by Larson et al. [8] and Shaqfeh et al. [9] in the inertio-elastic range. The experiments clearly
demonstrate the existence of a purely elastic overstable mode when the Deborah number, De,
which is the ratio of the relaxation time of the �uid to a typical hydrodynamic time, reaches
a critical value, Dec. A mechanism for the onset of overstability was earlier proposed for the
narrow-gap [8] and the wide-gap [9] con�gurations.
Similarly to any �ow in the transition regime, the TVF of viscoelastic �uids involves a

continuous range of excited spatio-temporal scales [10]. In order to assess the e�ect of the
motion of the arbitrarily many smaller length and time scales, one would have to resolve in
detail the motion of the small scales. This issue remains unresolved since, despite the great
advances in storage and speed of modern computers, it will not be possible to resolve all of
the continuous ranges of scales in the transition regime. It is by now well established that
low-order dynamical systems can be a viable alternative to conventional numerical methods as
one strives to probe the nonlinear range of �ow behavior [11; 12]. The relative simplicity of
low-order dynamical systems, and the rich sequence of nonlinear �ow phenomena exhibited
by their solution, have been the major contributing factors to their widespread use as models
for examining the onset of chaotic motion. Despite the severe degree of truncation in the
formulation of these equations, some of the basic qualitative elements of the onset of vortex
structures have been recovered using low-order dynamical models. Since the seminal work
of Lorenz [13], low-order dynamical systems have typically been used to handle simple �ow
con�gurations [14], particularly the Rayleigh–Benard thermal convection [15–20] and Taylor–
Couette �ow [21–24] problems. Experimental evidence for low-order dynamics has also been
demonstrated for Taylor-vortex �ow [25; 26]. The validity of the low-dimensional description
was also established for the Taylor–Couette �ow of a Newtonian �uid [23; 24]. The solution
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to the full Navier–Stokes equations was obtained by implementing an exact �nite-di�erence
scheme, and an approximate approach based on the Galerkin projection method and truncated
Fourier representation of the �ow �eld. Comparison of �ows based on the two methods led
to good agreement. However, low-dimensional models are expected to be valid in the vicinity
of the critical point(s). Higher order modes must be included if the model is expected to
capture the nonlinear dynamics that arises usually far beyond criticality. This approach has
mainly been devised to handle simple �ow con�gurations. However, more recently, attempts
have been made to apply low-order dynamical systems for complex geometry [27–30].
Although low-order dynamical systems have mainly been formulated for Newtonian �uids,

they have only recently been attempted for non-Newtonian �ows [30]. Khayat and associates
implemented a low-order dynamical system approach for non-Newtonian �uids in thermal
convection [31–34], rotating �ow [35–37], as well as in channel �ow [38]. Shear thinning
�ows [34; 37] were modeled using truncation levels similar to the Lorenz model [13]. In this
case, nonlinearities stem from inertia and the dependence of viscosity on the rate-of-strain
tensor, but the resulting three-dimensional system is similar to the Lorenz equations. It must
be noted that this level of truncation is too severe to expect any meaningful physics far
beyond the critical point to be captured. However, low-order models can be useful in giving
a simpli�ed version of the complex dynamics that is bound to arise when higher order modes
are included. In some situations, the dynamics predicted by low-order models is qualitatively
the same as that predicted by the ‘exact’ solution. This is what has been observed in the case
of purely elastic �uid systems, such as the TVF of a Boger �uid that is presently examined.
Recent theoretical work, for axisymmetric and non-axisymmetric �ows, has also been ex-

amining the linear stability of viscoelastic �uids [8; 9; 39], and nonlinear stability as well
[40–42]. The reader is referred to Shaqfeh [43] for a recent review. New phenomena are
constantly being attributed to �uid elasticity [44; 45]. The existence of a Hopf bifurcation
at the critical Deborah number was proved from linear stability analysis in the narrow-gap
limit [8] and for wide gap �ows [9]. Linear stability analysis indicates that, in the absence
of inertia, the base (Couette) �ow loses its stability to an overstable mode as the Deborah
or Weissenberg number exceeds a critical value. Unlike Newtonian �uids, which obey New-
ton’s law of viscosity, viscoelastic �uids are not governed similarly by a universal constitutive
law. The dependence of the predicted �ow behavior on the particular choice of a constitutive
model adds another di�culty in our attempt to interpret an already complex �ow situation,
particularly in the transition and turbulent regimes. Larson [46] carried out a linear stability
analysis in the narrow-gap limit, using the Doi-Edwards and K-BKZ constitutive equations.
Additional analysis was also carried out for �uids with a distribution of relaxation times [47].
The dependence of the critical Reynolds number, Rec, on De for the onset of TVF was found
to be generally non-monotonic, but the �ow is increasingly destabilized by �uid elasticity in
the higher De range [46]. Numerical solutions were also obtained for the TCF of an upper-
convected Maxwell (UCM) �uid, again neglecting inertia, by Northey et al. [40] using the
�nite-element method. Although their calculations con�rmed the existence of a stable Hopf
bifurcation at for De¿Dec, they encountered numerical instabilities, and the range of De
values for which the solution was obtainable was extremely narrow.
In an e�ort to probe further the nonlinear regime, Khayat [35] examined the interplay

between inertia and elasticity for �nite amplitude Taylor vortex �ow using a severely truncated
Galerkin representation of the full set of conservation and constitutive equations. The study
focused on the in�uence of elasticity and retardation on the stability and amplitude of the
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Taylor vortices in the presence of inertia. The rigid-free boundary conditions were used; it
was assumed that the �uid adheres to the inner and outer cylinders in the azimuthal direction,
and slips in the axial direction. Elastic e�ects were assumed to be weak in comparison to
those of inertia, and higher order normal stress terms were neglected. This led to a six-
dimensional nonlinear system, which reduces to Kuhlmann’s three-dimensional system for a
Newtonian �uid [23]. The low-order model system derived in the previous study [35] could
not possibly reproduce reasonably the �ow sequence reported in the experiment of Muller
et al. [1] for vanishingly low-Reynolds number. The major reason for this is the severe level
of truncation in the solution representation, and the use of the rigid-free boundary conditions.
The neglected higher order terms, in the normal stress, particularly ���, become important in
the limit De�Re, thus restricting the model to inertia dominant �ow. This term turns out
to be signi�cant in the limit of small Reynolds number. Although the previous formulation
is not adequate for the investigation of the purely elastic overstability or even a �ow with
negligible inertia (Re�De), it was possible to establish a good qualitative agreement between
the numerical results and the experimental measurements of Muller et al. [1].
In the present study, a judicious mode selection process is carried out to determine the type

and number of the most dominant modes. Attention is focused on the TCF of a highly elastic
�uid of the Boger type. The work is particularly focused on the instability of TCF of high-
molecular-weight �uids, typically composed of a Newtonian solvent and a polymeric solute.
A short summary of the results was communicated earlier in a letter [36]. Here a complete
account of the mathematical formulation, numerical implementation and physical analyses are
given. In order to make the formulation more tractable, inertia is neglected. The assumption of
stress-free condition along the axial direction is also relaxed. The validity of the approximate
solution is established upon comparison with existing linear stability results and experiment.
A multiple-scale analysis is carried out to examine the conditions for stability of the emerging
limit cycle under the in�uence of time relaxation, viscosity ratio, wave number and gap-to-
radius ratio. The ultimate aim is to recover quantitatively the experimental measurements of
Muller et al. [1], and predict what may happen to the �ow as the Deborah number is raised
beyond the range of experimental values.
The paper is organized as follows. In Section 2, the conservation and constitutive equations

are derived in the narrow-gap limit for an Oldroyd-B �uid. The nonlinear dynamical system
is then derived through a truncated representation of the �ow �eld in terms of Fourier and
Chandrasekhar modes. In Section 3 linear stability analysis and comparison with existing
(exact) results are presented, together with a multiple scale analysis around the bifurcation
point. Finite amplitude Taylor–Couette �ow and comparison with experiment are presented in
Section 4. Discussion and concluding remarks are covered in Section 5.

2. DERIVATION OF THE NONLINEAR DYNAMICAL SYSTEM

The derivation of the nonlinear dynamical system for a viscoelastic �uid is presented in this
section. First, the conservation and constitutive equations as well as the boundary conditions
are examined in the narrow-gap limit. The solution of these equations is represented in terms of
an in�nite number of discrete Fourier modes in the axial direction and Chandrasekhar functions
in the radial direction, which, upon truncation and application of the Galerkin projection, leads
to the �nite dynamical system that governs the expansion coe�cients.
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2.1. General equations and boundary conditions

Consider an incompressible viscoelastic �uid of density �, relaxation time �1 and viscosity �.
In this study, only �uids that can be reasonably represented by a single relaxation time
and constant viscosity are considered. The �uid is assumed con�ned between two in�nite
and concentric cylinders of inner and outer radii Ri and Ro, respectively. The present study
is limited to axisymmetric �ow. The inner cylinder is taken to be rotating at an angular
velocity �, while the outer cylinder is at rest. In cylindrical polar coordinates (ER;E�;EZ),
the conservation of mass and linear momentum equations are, respectively, (upper-case Latin
and Greek notations are used to denote dimensional variables)

∇ ·U=0; ∇P +∇ ·�= 0 (1)

where the inertia terms have been neglected. The assumption of negligible inertia is usually
valid for polymeric �ows as viscous e�ects tend to be dominant. Here P is the hydrostatic
pressure, ∇=ER(@=@R) + E�(@=R@�) + EZ(@=@Z) is the gradient operator, U is the velocity
vector (UR;U�; UZ) and � is the corresponding (symmetric) deviatoric stress tensor with com-
ponents �RR;�R� =��R;�RZ =�ZR;���;��Z =�Z�;�ZZ . An appropriate constitutive equation
is needed for �.
Although the stability picture is expected to be signi�cantly in�uenced by the constitutive

model, the present formulation will be restricted to the so-called Boger �uids, which obey
the Oldroyd-B constitutive equation. The resulting �ow will be compared with that observed
in the experiment of Muller et al. [1]. Some of the properties of Boger �uids are summa-
rized by Larson et al. [8], and are discussed here for completeness. The test �uid used in
the experiment is a dilute solution of a �exible high-molecular-weight isobutylene in a vis-
cous low-molecular-weight solvent (polybutene), and is well described by the three-parameter
Oldroyd-B equation. The �uid is a highly elastic of constant (shear independent) viscosity.
The Oldroyd-B constitutive equation thus predicts no shear thinning, and the �rst normal stress
coe�cient is constant, which is consistent with the measurements of the properties of dilute
solutions [50; 51]. The Oldroyd-B equation also predicts that the second normal stress di�er-
ence is zero, which is in rough agreement with rheological measurements [52]. In this case,
the deviatoric stress tensor � consists of the sum of a Newtonian (solvent) and a polymeric
contributions:

�=T − �s� (2)

where �≡∇U+(∇U)t is the strain-rate tensor, �s is the solvent viscosity and T is the elastic
part of �, which satis�es the upper-convected Maxwell equation [6]:

∇
T ≡ �1

[
@T
@T

+U · ∇T − (∇U)t · T − T · ∇U
]
+ T =−�p� (3)

where �p is the polymeric contribution to the shear viscosity and T is the time. The following
boundary conditions are imposed on the cylinder walls: (i) regardless of the nature of the two
cylinders, the no-penetration condition must apply:

UR(R=Ri; Z; T )=UR(R=Ro; Z; T )=0 (4)

(ii) no-slip conditions in the azimuthal direction, i.e.,

U�(R=Ri; Z; T )=�Ri; U�(X =Ro; Z; T )=0 (5)
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(iii) no-slip condition along the Z direction:

UZ(R=Ri; Z; T )=0; UZ(X =Ro; Z; T )=0 (6)

2.2. Governing equations in the narrow-gap limit

Consider now the �ow between concentric cylinders in the narrow-gap limit, i.e., in the case
when the radius Ri=Ro is very close to one. Suitable scales must be sought for length, time,
velocity and stress. There are, in fact, several choices possible [10; 53; 54]. One obvious
choice for the length scale is d≡Ro −Ri. In this case, one expects �=d=Ri to emerge as the
natural perturbation parameter for the problem, no matter what the remaining scales are. The
�ow with a relatively small rate of rotation of the inner cylinder is of particular interest in
the present work. Thus, in order to bring out the in�uence of elasticity through the Deborah
number, De, the dimensionless variables are introduced as follows:

x=
R− Ri
d

− 1
2
; z=

Z
d
; (ux; uz)=

1
Ri�

(UR;UZ)

t =
Ri�
d
T; uy=

U�
√
�

Ri�
; (�xx; �zz ; �xz)=

d
�Ri�

(TRR; TZZ ; TRZ)

p=
d

�Ri�
P; (�xy; �zy)=

d
√
�

�Ri�
(TR�; TZ�); �yy=

d
��Ri�

T��

(7)

where, following similar arguments to those in the case of a Newtonian �uid [10], suitable
scalings for the azimuthal velocity and shear stress components are used in terms of �. The
choice of scaling for T�� needs, however, some further justi�cation. This is a somewhat
trickier term to handle since it is the only stress component that completely vanishes in the
case of a Newtonian �uid, and has an increasingly in�uential role as �uid elasticity increases.
If T�� was scaled like the rest of the normal stress components in (7), then it would be the
only term of order � in the non-dimensional radial momentum equation (a comma denotes
partial di�erentiation):

�xx; x + �xz; z + p;x − ��yy − aRv(ux; xx + ux; zz)=0 (8a)

and would then have to be neglected in comparison with the rest of the stress terms on the
right-hand side. Now, examining the equation governing �yy:

�De(�yy; t + ux�yy; x + uz�yy; z)− 2De(uy; x�xy + uy; z�yz)=−��yy (8b)

with De being de�ned below, one immediately concludes that the term ��yy is in fact of order
De, and therefore cannot be neglected unless De itself is at most of order �. This was indeed
the assumption that was made in the earlier work [35] when the in�uence of weak elasticity
on the onset and stability of TVF was examined.
If expressions (7) are substituted into Equations (1)–(3), one recovers the important di-

mensionless groups in the problem, namely the Deborah number, De, and gap-to-radius ratio,
�, which will be introduced shortly. Another parameter, Rv, is also recovered, re�ecting the
e�ect of retardation in the Oldroyd-B �uid. Typically such a �uid is composed of a New-
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tonian solvent and a polymeric solute, and is called Boger �uid [6]. In this case, Rv is the
solvent-to-polymer viscosity ratio. One thus has

De=
�1Ri�
d

; Rv=
�s
�p
; �=

d
Ri

(9)

where �s and �p are recalled to be the solvent and polymer viscosity, respectively. Note that
in this case �= �s + �p. Another related dimensionless group, which is used in the present
formulation, is the polymer-to-solution viscosity ratio, a:

a=
�p
�
=

1
Rv+ 1

(10)

It is important to note that it is the departure �ow �eld from the base (Couette) �ow, rather
than the total �ow �eld, is of interest here. The base �ow can be easily shown to be:

usx = u
s
z =0; u sy =

1
2
− x; dps

dx
=Re(1− x)2 − 2aDe

�sxx = �
s
xz= �

s
zx= �

s
zz= �

s
yz= �

s
zy=0; � sxy= �

s
yx= a; �syy=−2aDe

(11)

The equations governing the departure from the base �ow are then derived by expanding
the �ow �eld in powers of �, and excluding terms of O(�) and higher:

ui(x; z; t) = usi (x) + �ui(x; z; t) +O(�)

p(x; z; t) =ps(x) + �p(x; z; t) +O(�)

�ij(x; z; t) = �sij(x) + ��ij(x; z; t) +O(�)

(12)

where i; j= x; y; z. Thus, in the absence of inertia, the (dimensionless) continuity and momen-
tum conservation equations for an Oldroyd-B �uid reduce to:

ux; x + uz; z =0 (13)

�xx; x + �xz; z + p;x − �yy − aRv(ux; xx + ux; zz) = 0 (14)

�xy; x + �zy; z − aRv(uy; xx + uy; zz) = 0 (15)

�xz; x + �zz; z + p;z − aRv(uz; xx + uz; zz) = 0 (16)

whereas the constitutive equation leads to

�xx; t + ux�xx; x + uz�xx; z − 2(ux; x�xx + ux; z�xz)=−De−1(�xx + 2aux; x) (17)

�yy; t + ux�yy; x + uz�yy; z − 2[(uy; x − 1)�xy + auy; x + uy; z�yz]=−De−1�yy (18)

�zz; t + ux�zz; x + uz�zz; z − 2(uz; x�xz + uz; z�zz)=−De−1(�zz + 2auz; z) (19)
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818 R. E. KHAYAT

�xy; t + ux�xy; x + uz�xy; z − �ux; x(�xy + a) + ux; z�yz + (uy; x − 1)�xx + uy; z�xz�

=−De−1(�xy + auy; x) (20)

�xz; t + ux�xz; x + uz�xz; z − (uz; x�xx + ux; z�zz)=−De−1��xz + a(ux; z + uz; x)� (21)

�yz; t + ux�yz; x + uz�yz; z − �uz; x(�xy + a) + uz; z�yz + (uy; x − 1)�xz + uy; z�zz�

=−De−1(�yz + auy; z) (22)

From expressions (4)–(6), one derives the following homogeneous boundary conditions:

ux(x=± 1=2; z; t)= uy(x=± 1=2; z; t)= uz(x=± 1=2; z; t)=0 (23)

In order for the boundary-value problem (13)–(23) to become well posed, appropriate
initial conditions are needed. The choice of initial conditions in this case is not crucial since
the long-term behavior is of interest.

2.3. The periodic solution in z

Consider now the general solution of Equations (13)–(22), which is assumed to be periodic
along the cylinder axis. The velocity, pressure and stress �elds are represented by an in�nite
Fourier series in the z direction, with the series coe�cients depending on x and t. The
Fourier modes have �=k (in units of d) as fundamental wavelength in the z direction. Each
�ow variable is thus written as a spectral sum of the form:

ui(x; z; t)=
∞∑

m=−∞
umi (x; t)e

imkz ; �ij(x; z; t)=
∞∑

m=−∞
�mij (x; t)e

imkz (24a)

where

umi (x; t)=
k
�

∫ �=k

0
ui(x; z; t)e−imkzdz; �mij (x; t)=

k
�

∫ �=k

0
�ij(x; z; t)e−imkzdz (24b)

are the complex Fourier coe�cients. Additional relations among the Fourier coe�cients are ob-
tained by examining the physical symmetry of the �ow. A symmetry allowed by
Equations (13)–(22), similarly to the Navier–Stokes equations [57; 56], occurs when the
�ow is invariant under z→−z, and uz→−uz; ��z→−��z (�= x; y). This amounts to having
invariance in �ow when the Taylor–Couette apparatus is turned upside down [56]. Thus,
in addition to being axisymmetric, the velocity and stress �elds must satisfy the following
symmetry conditions:

u�(x; z; t) = u�(x;−z; t); uz(x; z; t)=−uz(x;−z; t); p(x; z; t)=p(x;−z; t)

�ii(x; z; t) = �ii(x;−z; t); �xy(x; z; t)= �xy(x;−z; t); ��z(x; z; t)=−��z(x;−z; t)
(25)
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where i= x; y; z and �= x; y. It is not di�cult to see that this symmetry is preserved under the
nonlinear multiplication in both the convective and upper-convective terms of
Equations (13)–(22). The symmetry leads to the following simpli�cation:

Im[um� (x; t)]=Re[u
m
z (x; t)]= Im[pm(x; t)]=0 (26a)

for the velocity and pressure Fourier coe�cients, and

Im[�mii (x; t)]= Im[�xy(x; z; t)]=Re[�
m
�z(x; t)]=0 (26b)

for the stress coe�cients. Thus, the expressions for the �ow variables reduce to

ux(x; z; t) =
∞∑
m=0
umx (x; t) cos(mkz) (27)

uy(x; z; t) =
∞∑
m=0
umy (x; t) cos(mkz) (28)

uz(x; z; t) =
∞∑
m=0
umz (x; t) sin(mkz) (29)

p(x; z; t) =
∞∑
m=0
pm(x; t) cos(mkz) (30)

�ii(x; z; t) =
∞∑
m=0
�mii (x; t) cos(mkz); (i= x; y; z; no sum) (31)

�xy(x; z; t) =
∞∑
m=0
�mxy(x; t) cos(mkz) (32)

��z(x; z; t) =
∞∑
m=0
�m�z(x; t) sin(mkz); (�= x; y) (33)

The Galerkin projection method is now applied. The method consists of multiplying Equa-
tions (13)–(22) by the corresponding modes above and integrating with respect to z from 0
to �=k. An in�nite set of coupled partial di�erential equations is obtained, which govern the
expansion coe�cients. If Equations (13)–(22) were linear, the various modes involved would
have separated in a manner similar to the case of a Newtonian �uid [59], and the �rst-order
z-dependent terms would have to be examined. In the present nonlinear context, the zeroth-
order terms are also retained in order to ensure that part of the nonlinear upper-convective
terms in the constitutive equations, do not vanish in the projection process. Previously [35],
all the zeroth-order coe�cients �0ij , except �

0
xy, were neglected. This approximation was rea-

sonably justi�ed since the roles of both inertia and elasticity were examined. In the present
study, however, the instability of highly elastic �uids is of concern, and a higher number of
modes in shear and normal stresses must be retained. The elimination of the z dependence
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is detailed in Appendix A. After truncation, the resulting equations that govern the (x; t) de-
pendent coe�cients are given through the system of Equations (A1)–(A16). The solution of
this system will be sought next subject to boundary conditions (A17).

2.4. The nonlinear dynamical system

The most crucial step in the problem formulation is seeking an orthogonal representation in x
for the solution of Equations (A1)–(A16) and imposing a suitable level of truncation in order
to obtain the �nal nonlinear dynamical system. A judicious selection process must then be
applied for the choice of the various modes in order to ensure the physical and mathematical
coherence of the �nal model. Not only does the approximate �ow solution have to satisfy the
imposed boundary conditions at the inner and outer cylinders, it must also reduce, in the limit
of small departure from the base �ow, to the corresponding solution for linear viscoelastic
�ow with negligible inertia. In this case, the equations reduce to those of [8] in the narrow-gap
limit.
If the nonlinear terms are neglected in Equations (A1)–(A16), all the zeroth-order coe�-

cients u0i (x; t); p
0(x; t) and �0ij(x; t) become decoupled from the remaining variables, and decay

to zero with uninteresting transients. For linear stability analysis, one sets u1x (x; t)=U (x)e
−i!t ,

etc., where ! is generally complex, with !r and !i being the real and imaginary parts, re-
spectively. In this case, the stress components are explicitly expressed in terms of the velocity
and velocity gradient through Equations (A1)–(A16). Upon elimination of the pressure from
Equations (A3) and (A6), and the z velocity component from Equation (A2), the following
fourth-order equation for U (x) is obtained:

(U ′′ − k2U )′′ +	k3U ′=0 (34)

where similar notations to those of Larson et al. [8] are adopted (note that a prime denotes
di�erentiation with respect to x). In this case, the eigenvalue, 	, of the problem is given by:

	=
�De2 
c
k

where 
c ≡ 2D2(1 + 2D)(Rv+D)− 2D3(1 +D)
(Rv+D)2

(35)

Here D≡ 1=(1− i!De). The boundary conditions at the inner and outer cylinders become:
U (±1=2)=U ′(±1=2)=0 (36)

The solution of the eigenvalue problem (34) and (36) is obtained using the direct method.
Similarly to Larson et al. [8], the solution may be written as:

U (x)=
4∑
i=1
Aie�ix (37)

where the �i are the distinct roots of the characteristic equation corresponding to (34). Since
solution (37) must also satisfy the homogeneous boundary conditions (36), there results the
following system of equations for the coe�cients Ai:

4∑
i=1
Ai=

4∑
i=1
Ai�i=

4∑
i=1
Aie�i =

4∑
i=1
Ai�ie�i =0 (38)

The system (38) admits a nontrivial solution if the corresponding determinant is zero. The
eigenvalues are determined using an iteration scheme on the initial guesses and the secant
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method until the determinant is less than an imposed small tolerance [8]. The eigenvalues
	 obtained using this method are found to be all imaginary leading to the same dispersion
relation as that of Larson et al. [8]. Thus, upon setting !i=0 for the neutral curve in the
(De; k) plane, one obtains an expression derived from the fact that the real part of 	 is always
zero and gives the value of !r in terms of the real root(s) of the following equation:

Rv3	3 + Rv(7Rv2 + Rv− 1)	2 + (3Rv3 + 2Rv2 + 2Rv+ 1)	

−(3Rv3 + 7Rv2 + 5Rv+ 1)=0 (39)

where 	=(!rDe)2. Note that, in the case of a Maxwell �uid, the solution of Equation (37)
reduces to 	=±1. This critical value, for the onset of linear overstability, and the rest of the
values on the neutral stability curve, should serve as limit values. By limit values it is meant
those values predicted by the nonlinear theory in the limit of small departure from the base
�ow, where only an approximate solution can be found.
An approximate solution to the linear problem (34)–(36) is now sought, and then compared

with the exact solution from the direct method. The following truncated representation for
U (x) is chosen in terms of a symmetric and an antisymmetric modes:

U (x)=U1�1(x) +U2�2(x) (40)

where �1(x) and �2(x) are Chandrasekhar functions [57], which are given explicitly in
Appendix B.
Other orthogonal functions could also have been used [58; 59]. Upon projection of

Equation (34) on each of the two modes above, and for a non-trivial solution, the following
characteristic equation for 	 is obtained:

k6�
C3C7	2 − (k4 + �4 − 2k2�2C1)(k4 + �4 − 2k2
2C6)=0 (41)

where �; 
; C1; C3; C6 and C7 are constants de�ned in Appendix C. It is found that, for a UCM
�uid (Rv=0), the approximate minimum value of the Deborah number and corresponding
wave number for the onset of the most unstable (overstable) mode are

√
�Demin =6:25 and

kmin =5:95, respectively, compared to the exact values 5.92 and 6.7 based on the direct method
(see also Larson et al. [8]).
The exact solution (37), when compared with Equation (40), gives an estimate of the

magnitude of the error resulting from the truncation in solution (40). It is expected that the
error remains of the same order of magnitude, for small �ow departure, when such a truncation
is also adopted for the solution of the full nonlinear Equations (A1)–(A16). Comparison
with experiment for the postcritical �nite amplitude TCF will be carried out to monitor the
accuracy of the solution and the e�ect of truncation. The neutral stability curves, based on
the approximate solution (40) are shown in Figure 1 for various values of the viscosity ratio,
Rv. The �gure also includes an inset showing the exact neutral curves (which are essentially
the same as those reported by Larson et al. [8]). It is generally clear from the �gure that the
two sets of curves, for all viscosity ratios, exhibit similar behavior. At small wave number,
the critical Deborah number when overstability sets in decreases sharply with k, reaches a
minimum at k= kmin, and increases again for k¿kmin. All curves indicate a general �attening
around kmin, con�rming the experimentally observed wide range of wave numbers at which
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Figure 1. Marginal stability curves for the onset of purely elastic oscillatory TVF. Comparison between
approximate and exact (inset) solution.

overstability sets in [7; 60; 61]. The �gure indicates a close quantitative agreement between
the exact solution (37) and approximate solution (40) for k¡kmin. Thus, high frequency
(along the cylinder axis) perturbations tend to require a smaller number of orthogonal modes
in the solution representation for U (x). The exact solution tends to show a more pronounced
�attening of all the curves.
On the basis of the above analysis and results, one now proceeds and imposes the same

type and number of orthogonal modes that may adequately describe the nonlinear representa-
tion for Equations (A1)–(A16). It is �rst observed that, if only one fundamental eigenmode
is kept in expression (40), only the trivial solution to problem (34) and (36) is obtained.
This corresponds exactly to the level of approximation adopted in the previous work [35],
where only �ows with dominant inertia (Re�De) could be treated. The general solution
to Equations (A2)–(A16) must then be chosen so that (1) linear behavior is reasonably
recovered for small deviation from the base �ow, and (2) boundary conditions (A17) are
satis�ed. The elimination of the x dependence is achieved by expanding the solution of
Equations (A1)–(A16) in terms of the Chandrasekhar functions and their derivatives. The
expansion as well as the resultant dynamical system are detailed in Appendix B.
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3. EXISTENCE AND STABILITY OF PURELY ELASTIC OSCILLATORY
TAYLOR–COUETTE FLOW

Although the existence of purely elastic overstable TVF is now well established from linear
stability analysis [8], the conditions for its stability are yet to be addressed. For completeness,
the existence of a Hopf bifurcation as the Deborah number reaches a critical value is �rst
proven through linear stability analysis of system (B8), and then the method of multiple scales
is used to examine the stability of the limit cycle near the bifurcation �xed point.

3.1. Linear stability analysis

Consider the small departure from the basic Couette �ow. System (B8) is linearized around
the origin by assuming the velocity and stress coe�cients to take the form:

uabi (t)= 
u
ab
i e

−i!t; �abij (t)= 
�
ab
ij e

−i!t (42)

where i; j= x; y; z and a; b=0; 1; 2. Note that barred variables are constants and !=!r + i!i
is generally complex. The resulting characteristic equation is derived in Appendix D, which,
in analogy to Equation (41), is cast as

k6�
C3C7	̂2 − (k4 + �4 − 2k2�2C1)(k4 + �4 − 2k2
2C6)=0 (43)

where, similarly to Equation (35), one lets

	̂=
�De2ĉ
k

; ĉ≡ 2D2(1 + 2D)(Rv+D)− 2D3(1 +D)

(Rv+D)

√[
Rv+

D�21
k4 + �4 − 2C1�2k2

] [
Rv+

D�22
k4 + 
4 − 2C6
2k2

] (44)

In fact, Equation (43) is more complicated than Equation (41), and is therefore less amenable
to algebraic manipulations except for a Maxwell �uid (Rv=0). Thus, an equation similar to
Equation (35) is di�cult to obtain. The frequency of oscillation (or, more precisely, !rDe),
corresponding to a marginal curve (for given Rv), is obtained by setting Re(ĉ)=0 and !i=0.
The resulting nonlinear algebraic equation appears to have only one real root, which is then
used to obtain the critical value for the Deborah number that satis�es:

√
�De=

1
k
√
Im(ĉ)

[
(k4 + �4 − 2k2�2C1)(k4 + �4 − 2k2
2C6)

�
C3C7

]1=4
(45)

Figure 2 displays the marginal curves based on Equation (45), which are compared to those
based on Equation (41). The former curves are seen to lead generally to a slightly lower
critical Deborah number (for a given wave number). Agreement is better as Rv increases or
as k increases. Indeed, in the limit of in�nite wave number Equations (41) and (43) lead to
identical results since limk→∞ (ĉ − 
c)=0. A similar conclusion is drawn when the marginal
frequencies are compared. This is depicted in Figure 3, which shows that the frequency at
the onset of oscillatory Taylor–Couette �ow increases (from zero) with the wave number,
reaches a maximum, at the values (Demin; kmin), and then decreases asymptotically to zero
as k→∞. Thus, periodic TVF appears to be easiest to detect, given its relatively maximum
frequency, when it �rst sets in. Again, the two sets of curves in Figure 3 compare well for
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Figure 2. Marginal stability curves for the onset of purely elastic oscillatory TVF. Comparison be-
tween curves based on linear stability analysis (dashed curves) of system (B8) and those based on the
approximate solution (solid curves) to Equation (37). The former lead slightly lower critical values.

Rv¿2 and large wave numbers. That the maximum in frequency coincides at the onset of the
Hopf bifurcation is not di�cult to prove since the frequency at the critical point is always of
the form: !r ∝ 1=De, so that @!r=@k=0 whenever @De=@k=0.

3.2. Stability of the Hopf bifurcation

Through the linear stability analysis above, various conditions for the existence of oscillatory
TVF were established. It is found that the base (Couette) �ow remains stable as long as De is
below Dec, with Dec satisfying Equation (45). At De=Dec the base �ow loses its stability,
but whether this loss of stability is always accompanied by an exchange of stability between
the circumferential and periodic �ow remains to be established. In other words, the emerging
Hopf bifurcation may not be always stable. One is particularly interested in seeking conditions
under which periodic behavior may not set in, and this depends on the values of k; Rv and �
when De slightly exceeds Dec. Since the bifurcation point is a nonhyperbolic �xed point, a
regular perturbation expansion around it does not lead to the true stability picture. In this work,
the method of multiple scales is used, similarly to thermal convection of viscoelastic �uids
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Figure 3. Frequency of limit cycle at the onset of purely elastic oscillatory TVF as function of the
wave number. Curves based on similar solutions as in Figure 2.

[33]. Another alternative is to use center manifold theory [62–64], which was also applied
for viscoelastic thermal convection [32]. The method of multiple scales is well documented
elsewhere (see, for instance, Nayfeh and Balachandran [64]), and only details relevant to
overstable Taylor–Couette will be given here.
Consider the bifurcation that occurs at De=Dec(k= kc) for a given viscosity ratio as shown

in Figure 2. At the bifurcation point, two of the eigenvalues are complex-conjugate purely
imaginary, ±i!r , and the rest of the roots are generally complex with negative real parts.
The corresponding limit cycle has a period given by 2�=!r . In the vicinity of the bifurcation
point (origin in phase space), the velocity and stress coe�cients, which are governed by
system (B8), are next approximated, thus allowing the determination of the limit cycle and
its frequency as one departs from the �xed point. It is �rst convenient to recall system (B8):

dxi
dt
=Fi(x1; : : : ; x20;De); i∈ [1; 20] (46)

where xi(t) are the stress coe�cients given by Equation (B9). Note that in the absence of
inertia only the stress coe�cients are dependent variables since the velocity coe�cients are
expressible in terms of stresses. In this case, the Hopf bifurcation point becomes (xi=0;De=
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Dec); ∀i∈ [1; 20]. The departure from the bifurcation point is then introduced as:

xi= �yi; i∈ [1; 20] and De −Dec = �2� (47)

where � is a small dimensionless ordering parameter, which should not necessarily be identi�ed
with the gap-to-radius ratio, �, and will be set equal to unity at the end of the analysis.
Substituting Equation (47) into Equation (46), expanding the right-hand side(s) in Taylor
series for small ‖y‖ and small |�|, and using the fact that Fi(0; : : : ; 0;Dec)=0, one obtains

dyi
dt
=Fi; jyj + �Fi; jkyjyk + �Fi;De �+O(�); i∈ [1; 20] (48)

where a repeated index denotes summation over the index and a comma means partial dif-
ferentiation. To determine an approximation to the limit cycle, one introduces another time
scale T= �2t and seeks expansions of the form:

yi=y1i (t; T ) + �y
2
i (t; T ) + �

2y3i (t; T ) +O(�
2); i∈ [1; 20] (49)

Substituting Equation (49) into Equation (48) and equating coe�cients of like powers of
� leads to the nondecaying solution for y1i of the form:

y1i (t; T )=A(T )pie
i!t + A∗(T )p∗

i e
−i!t (50)

where pi are the components of the right eigenvector of the 20×20 Jacobian matrix Fi; j of Fi
evaluated at (0; : : : ; 0;Dec). A(T ) is a complex function that is determined upon elimination
of the secular terms, leading to the following amplitude equation [65]:

@A
@T
= ��1A+ 4�2A2A∗ (51)

where �1 =�1r + i�1i and �2 =�2r + i�2i are complex quantities given in Appendix C. Although
the solution of Equation (51) determines the amplitude of the limit cycle near the bifurcation
point, it is the value of and, more importantly, the sign of the ratio �1r=�2r that are of interest
since they determine the stability of the limit cycle.
Indeed, �1r=�2r represents the slope of the Hopf bifurcation near the �xed point in the

(|A|;De) plane, and the limit cycle is stable (unstable) if �1r=�2r is negative (positive).
Figure 4 displays the value of �1r=�2r as function of the critical wave number, kc, for various
values of the viscosity ratio Rv for �=0:0625. This particular value of the gap-to-radius ratio
corresponds to the Taylor–Couette apparatus used by Muller et al. [1], which will be referred
to extensively below. The �gure shows that �1r=�2r can be positive when Rv is small, but that,
overall, it is negative. It appears, for the range of parameters investigated, that �1r is always
positive and that �2r may change sign as kc or Rv are varied. Typically, for Rv¡0:3, the limit
cycle appears to be stable for the lower range of kc values. When kc increases (for given
Rv), there is a change in the stability picture as �1r=�2r becomes singular. At this point �2r
is zero and switches sign to become positive. The point of discontinuity is shifted to higher
kc values as Rv increases. For Rv¿0:3, the limit cycle appears to be always stable, but the
overall in�uence of Rv is not necessarily consistent.
The in�uence of the viscosity ratio is depicted in Figure 5, which displays the behavior of

�1r=�2r as function of Rv for four values of kc and �=0:0625. The �gure shows that �1r=�2r is
negative, each curve exhibits a minimum that tends to be stronger as k decreases. The ratio
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Figure 4. In�uence of the wave number on the stability of the limit cycle near the bifurcation point. For
given viscosity ratio, Rv, the limit cylce is stable (unstable) when the ratio �1r=�1i is negative (positive).

tends generally asymptotically to zero as k→∞. As to the e�ect of �, the gap-to-radius ratio
does not seem to have any in�uence on the stability picture. This is con�rmed in Figure 6,
which shows the behavior of �1r=�2r as function of k for various � values and Rv=0:2.

4. FINITE AMPLITUDE ELASTIC OVERSTABILITY AND COMPARISON
WITH EXPERIMENT

Linear stability analysis, such as the one presented in the previous section, determines the
�ow �eld as it departs slightly from the base �ow. However, it fails to give the �ow structure
for a large disturbance. The in�uence of the nonlinear terms must thus be examined through
the numerical solution of system (B8). The in�uence of elasticity or normal stress e�ects will
be examined in some detail. The behavior of highly elastic �uids with negligible inertia is
particularly considered as the elasticity level is increased beyond the critical value for loss
of stability of the base �ow. The �ow will be examined as overstability (oscillatory TVF)
sets in, and it will be seen how nonlinearity a�ects the subsequent �ow by determining the
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Figure 5. In�uence of the viscosity ratio on the stability of the limit cycle near the bifurcation point. For
given wave number, k, the limit cylce is stable (unstable) when the ratio �1r=�1i is negative (positive).

temporal �ow behavior and corresponding power spectrum. The present nonlinear behavior
will also be compared with the experiment of Muller et al. [1], which was conducted for a
highly elastic �uid under conditions of vanishingly small inertia.
Muller et al. [1] conducted Laser Doppler velocimetry (LDV) measurements of the axial

velocity component of a highly elastic (Boger) �uid (a polyisobutylene-based solution) placed
between two concentric cylinders (�=0:0625), with the outer cylinder being at rest, and the
inner cylinder rotating at constant angular velocity, �. The velocity signature shows an oscil-
latory �ow at a vanishingly small Reynolds number. The �ow appears to undergo a transition
from the purely azimuthal Couette �ow to time periodic TVF as De exceeds a critical value,
Dec, say, which is in good agreement with the value predicted by the earlier linear stability
analysis of an Oldroyd-B �uid [8]. The LDV measurements show that the oscillatory behavior
is not localized but appears to be spread throughout the �ow. As De increases from the criti-
cal value, the amplitude of oscillation increases like (De−Dec)1=2. The corresponding power
density spectrum shows peaks, which are instrumentally sharp at the fundamental frequency,
the growth of harmonics, and eventually subharmonics, re�ecting, perhaps, the presence of a
period doubling or quasiperiodic motion. However, the emergence of subharmonics appears
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Figure 6. In�uence of the gap-to-radius ratio, �, on the stability of the limit cycle
near the bifurcation point.

to be incorrect from later studies. Although the �nite-element calculations of Northey et al.
[40] predicted the emergence of �nite amplitude overstability for a UCM �uid, these authors,
reported having numerical di�culties in obtaining the solution at the higher Deborah numbers
(possibly coinciding with the onset of period doubling). Their calculations are thus limited
to an extremely narrow range of postcritical Deborah numbers. Khayat’s previous work [35]
con�rms the existence of a stable Hopf bifurcation for De¿Dec which loses its stability at
some De value coinciding with the onset of a series of period doublings. At the cumulation
point, the velocity signature, phase space trajectory and power spectrum indicate the onset
of chaotic behavior. The present work attempts to reproduce the experimentally observed �-
nite amplitude elastic overstability for an Oldroyd-B �uid by adopting a nonlinear dynamical
systems approach as formulated in the previous sections.
Experimental results show an oscillatory �ow at Re∼ 7× 10−3. The �ow appears to undergo

a transition from the purely azimuthal CF to time periodic TVF as De exceeds a critical value.
The LDV measurements show that the oscillatory behavior is not localized but appears to be
spread throughout the �ow. As De increases from the critical value, the amplitude of oscillation
increases. The corresponding power density spectra show peaks, which are instrumentally
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sharp at the fundamental frequency, the growth of harmonics, and eventually subharmonics,
re�ecting the possible presence of period doubling or emergence of a second fundamental
frequency. Additional experiments at relatively high Deborah number are, however, needed in
order to determine the possible route(s) to chaotic or turbulent motion.
One cannot expect full quantitative agreement between theory and experiment given the

assumptions made in the formulation, particularly, the level of approximation in the solution
representation, the narrow-gap limit, and the Oldroyd-B constitutive model. Moreover, the
wave number k needs to be imposed since it cannot be theoretically determined. This quan-
tity is also not known from experiment in the present case; the wave number is di�cult to
establish under transient conditions of �ow [60; 61]. Other parameters and variables are also
di�cult to obtain from the experiment and will have to be somewhat speculated as it will next
argued.
Attention is focused on the �ow conditions as examined in the experiment of Muller

et al. [1], and attempt is made to determine the values of the various dimensionless group
parameters introduced in system (B8). Not all �ow parameters needed for theory are ex-
plicitly reported from experiment. The test �uid used in the experiment has a (constant)
viscosity of 162 poise, and consists of 1000 ppm of a high molecular weight polyisobutylene
dissolved in a viscous, low molecular weight polybutene of viscosity 128 poise, so that the
solvent-to-polymer viscosity ratio Rv=3:76. The �uid relaxation time �1 varies depending on
which rheological technique is used to measure it, but its value ranges roughly from 3.3 to
10:9 s [1; 60; 61]. The inner and outer cylinder radii were 8 and 8:5 cm, respectively, so that
�=0:0625. Although the inner cylinder angular velocity, �, was not explicitly given in the
experiment, its value can still be inferred from the value of the experimental Deborah number,
DeM, which was introduced by Muller et al. [1] as: DeM = [(2��1(1 + �)2)=((1 + �)2 − 1)].
Note that DeM�→0 =De. It appears that there was only one �uid used throughout the experi-
ment, and DeM was thus varied in the experiment by varying only the inner cylinder speed,
�. Hence, from the range of values of DeM reported in the experiment, the corresponding
values of the inner cylinder speed are given by �=DeM=77:06 for �1 = 4:4 s and �=0:0625.
Muller et al. [1] reported that the highest Reynolds number reached in the experiment was of
the order 7× 10−3. Indeed, if one takes the same de�nition of the Reynolds number used in
the experiment, namely Re=[(��Rid)=(�)], and considers the value of � corresponding to
the highest Deborah number reported (DeM =54:5), one �nds that Re=2:86× 10−3 (assuming
the density �=1 g=cm3). As mentioned earlier, the experimental wave number, k, at which
overstability occurs, is not reported by Muller et al. [1]; its measurement may be di�cult
under transient conditions. Its exact value, however, is not crucial in this case since it is likely
that the critical Deborah number for the onset of overstability does not depend strongly on the
wave number in the range k ∈ [4; 8] for Rv=3:76 as theory suggests; this is re�ected by the
�attening of the neutral stability curves around the critical value Demin of the Deborah number
(see Figure 2). The wave number will be �xed to k=4:85 for all subsequent calculations.
This is slightly lower than the minimum value kmin =5:8 of the wave number, which corre-
sponds to Demin =31:52 predicted by the present linear stability analysis. The value k=4:85
is close to wave numbers reported in other experiments on Taylor–Couette �ow of viscoelastic
�uids [60; 61]. Thus, similarly to the experiment, only the Deborah number will be varied
(by varying �) in the following calculations and results.
The �ow is now examined as De is increased from zero, that is from the Newtonian level.

Referring to Figure 2, it is seen that, for a given Rv, the Couette �ow is unconditionally
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stable to any perturbation as long as De is below the critical value. Note that for Rv=3:76,
k=4:85 and �=0:0625, the critical Deborah number is equal to Dec = 32 at which the base
�ow loses its stability. In the absence of inertia, and in contrast to the Taylor–Couette �ow
of a Newtonian �uid, an exchange of stability takes place between the circular Couette �ow
and oscillatory TVF since no steady TVF can set in [35]. In order to compare the present
results with experiment, dimensional quantities are used. It is thus important to point out
the manner in which the main variable of interest, namely, the axial velocity signal, is ob-
tained from the solution of system (B8). Once the coe�cients related to the radial velocity
are obtained, the dimensionless axial velocity component is determined. In dimensional form
one has:

UZ(x; z; t)=−Ri�
k
sin(kz)[�u11x (t)�

p
1 (x) + 
u

12
x (t)�

p
2 (x)]≡−W (x; t) sin(kz) (52)

Note that x; z and t remain dimensionless. In the experiment of Muller et al. [1], the
evolution of the axial velocity was measured at x=1=4. Thus, for comparison between theory
and experiment, the evolution of the spatial amplitude of the axial velocity, W (1=4; t). is
evaluated. The experimental critical value of the Deborah number, at which oscillatory motion
was �rst detected, is reported to be equal to 32.3, and happens to be slightly larger than the
theoretical value, Dec = 32, predicted by linear stability analysis. This disagreement may be
only apparent, and may be justi�ed if one notes that the experimental critical value is extremely
di�cult to measure accurately. It is simply di�cult to detect experimentally small amplitude
oscillatory TVF as De just exceeds Dec. This is also true for the theoretical calculations; the
oscillatory behavior was only detected as De exceeded 32. In fact, at De=32, the amplitude
of oscillatory signal for W (1=4; t) is O(10−5) cm=s. The velocity signature and corresponding
power density spectrum are shown in Figure 7 for De=32. The scales in this and subsequent
�gures are the same. Insets are also included showing the behavior on much smaller scales.
It is thus reasonable to claim that the predicted and experimental critical Deborah numbers
are practically equal.
As De is increased from the critical value, the amplitude of oscillation increases, con-

�rming the existence and the stability of the Hopf bifurcation, in agreement with the mul-
tiple scales analysis above and experiment [1]. The resulting sequence of �ows is shown in
Figures 8–11 for the same range of Deborah numbers as in the experiment: 32¡De¡50,
and should be compared with that reported in Figures 6 to 9 of Muller et al. [1]. Note the
di�erent de�nition of the Deborah number used by Muller et al. [1], DeM, de�ned above. In
the present problem, �=0:0625, and De=0:911DeM. Each �gure shows the time evolution
of W (1=4; t) and corresponding power spectrum for the same Deborah numbers reported from
experiment. At De=32:5 (Figure 8), the velocity signature and corresponding Fourier spec-
trum display periodic motion after the purely circular (Couette) �ow becomes unstable. The
amplitude of oscillation remains relatively small (0:008 cm=s). The power spectrum indicates
the presence of a dominant frequency of 0:02Hz and a weak second harmonics. This periodic
behavior persists as De increases, as depicted in Figure 9 for De=35, with the �ow always
oscillating around the origin (Couette �ow). At De=43:57 (Figure 10), the motion remains
periodic around the origin, with an increase in amplitude to 0:052 cm=s. There is an increase
in the fundamental frequency to 0:0298 Hz and the emergence of four signi�cant even and
odd harmonics. This trend persists as De is further increased with the eventual emergence
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Figure 7. Elastic overstability for a Boger �uid at De=32 (Rv=3:76; �=0:0625 and k =4:85). The
�gure shows the time signature and power spectrum of the axial velocity at x= 1

4 as oscillatory behavior
is �rst detected (insets). The scales used are the same as in subsequent �gures.

of additional harmonics. This is clearly depicted in Figure 11 for the highest Deborah number
considered in the experiment: De=49:65.
In sum, the sequence of �ows predicted by the present model is clearly comparable to that

reported by Muller et al. [1]. Experiment predicts a loss of stability of the origin at a critical
Deborah number equal to 32.3, while the present calculations suggest that oscillatory TVF sets
in at De=32. Both theory and experiment predict the increase in amplitude of the velocity
signal, the emergence of higher harmonics in the Fourier spectrum. Unlike our previous qual-
itative comparative studies [35], the present comparison leads to good quantitative agreement
between theory and experiment in the postcritical Taylor–Couette �ow. This con�rms that,
although qualitative agreement is achieved regardless of the type of boundary conditions used,
the use of rigid–rigid boundary conditions appears to lead to the accurate quantitative picture.
The agreement between theory and experiment is further evidenced from the bifurcation and
frequency diagrams.
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Figure 8. Time signature and power spectrum of the axial velocity at x= 1
4 for a Boger �uid at De=32:5

(Rv=3:76; �=0:0625 and k =4:85).

Figure 12 shows the Hopf bifurcations for the square of the velocity amplitude based on
the present model, and the measurements from Muller et al. [1]. In the �gure, the experiment
and numerical calculation show the onset of periodic motion as the Deborah number exceeds
the critical value (Dec≈ 32). Both sets of data show that the amplitude of oscillation grows
like (De−Dec)1=2 in agreement with the prediction based on asymptotic analysis in the limit
De→Dec. Figure 13 displays the dependence of the dominant frequency and its harmonics
on the Deborah number. The frequency tends to increase with De almost linearly. Unlike the
amplitude, the frequency exhibits a jump at the critical Deborah number. This means that any
initial weak velocity amplitude at the onset of oscillatory TVF has a dominant frequency that
is relatively easy to detect. The agreement between the computed and measured frequencies
is obvious from the �gure. The apparent growing disagreement for the higher harmonics is to
be expected. Any initial discrepancy at the dominant frequency level is simply ampli�ed as
it is multiplied by two for the second harmonics, by three for the third harmonics and so on.
It is important to emphasize that there is very good agreement between theory and ex-

periment despite the approximations and uncertainties in the present formulation. Assumptions
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Figure 9. Time signature and power spectrum of the axial velocity at x= 1
4 for a Boger �uid at De=35

(Rv=3:76; �=0:0625 and k =4:85).

such as the narrow-gap limit and the in�nite length of the two cylinders cannot but make
the theory approximate. The uncertainties come mainly from not knowing the axial wave
number accurately, and the constitutive behavior of the test �uid used in the experiment. To
our knowledge, this is closest agreement between theory and experiment that has so far been
achieved for the TCF of highly elastic �uids.

5. DISCUSSION AND CONCLUDING REMARKS

In this study, a low-dimensional nonlinear dynamical system approach is adopted for the sim-
ulation of the narrow-gap TCF of highly elastic �uids of the Oldroyd-B type. This rather
elementary constitutive model is adopted for three main reasons. First, since the aim of
the study is to examine the in�uence of elasticity on the onset and stability of TVF, the
use of the Oldroyd-B model becomes justi�ed for a class of the so-called Boger �uids for
which the viscosity is sensibly constant over a wide range of shear rates with the corre-
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Figure 10. Time signature and power spectrum of the axial velocity at x= 1
4 for a Boger �uid at

De=43:57 (Rv=3:76; �=0:0625 and k =4:85).

sponding normal stress levels nevertheless substantial. A polyacrylamide solution in a mal-
tose syrup=water mixture typically constitutes such a �uid [66]. Thus, the in�uence of shear
thinning, or, more generally, the dependence of the �uid parameters on the rate-of-strain
tensor may be neglected. Second, the Oldroyd-B constitutive equation is one of the sim-
plest viscoelastic laws that accounts for normal stress e�ects (which lead to the so-called
Weissenberg rod-climbing phenomenon). Other more realistic phenomenological [6; 67] or
molecular-theory based models [6; 68–70] are more di�cult to handle, and are likely to lead
to a stability picture di�erent from the one predicted by the present analysis. For instance,
the presence of shear thinning, which is not accounted for by the Oldroyd-B equation, will
likely have a destabilizing e�ect since the e�ective Reynolds number increases as the vis-
cosity decreases with increasing shear rate [34; 37; 46]. Other more complicated constitutive
equations accounting for the nonlinear dependence of the transport coe�cients on the rate-
of-strain tensor may also be examined. The present formulation accounts for nonlinearities
stemming only from the convective and upper-convective terms in the constitutive equation.
Third, the formulation and method of solution are validated upon comparison with the ex-
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Figure 11. Time signature and power spectrum of the axial velocity at x= 1
4 for a Boger �uid at

De=49:65 (Rv=3:76; �=0:0625 and k =4:85).

periment of Muller et al. [1], which was conducted for a Boger �uid in the absence of
inertia.
The nonlinear dynamical system is derived by expanding the �ow �eld (velocity, pressure

and stress) into suitably selected Fourier modes along the axial direction, and Chandrasekhar
functions in the radial direction. The time-dependent expansion coe�cients are evaluated by
applying the Galerkin projection of the various modes onto the conservation and constitutive
equations, and adopting a suitable truncation to close the hierarchy of the resulting set of
ordinary di�erential equations. The in�uence of higher order stresses is assessed upon com-
parison with the analytical solution of the linearized equations, and with experiment in the
nonlinear regime of postcritical TVF. It is concluded that 20 independent modes in stress are
su�cient to obtain an accurate solution. Because of the absence of inertia e�ects, the veloc-
ity coe�cients are explicitly expressible in terms of the stresses. The more severe truncation
level used in our previous work [35] led to a six-dimensional system, which was derived by
neglecting normal stress terms that tend to become signi�cant for highly elastic �ows. The
present model (B8), which, in contrast to the previous model, is based on the more realistic
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Figure 12. Bifurcation diagram and comparison between theory (dashed line) and experimental measure-
ments (diamonds) of Muller et al. [1]. The �gure shows the square of the amplitude of axial velocity

at x= 1
4 as a function of the Deborah number.

rigid–rigid boundary conditions, takes into account more e�ectively the in�uence of normal
stresses, and is thus adequate to describe the �ow of a highly elastic �uid (with negligible
inertia). The inclusion of higher order stress terms and the more realistic boundary conditions
allow direct comparison with the experiment of Muller et al. [1].
As mentioned above, a judicious selection process of the most in�uential modes was carried

out to ensure that the relevant dynamics is captured by the approximate model and solution.
This was �rst done by referring to the results from linear stability analysis of Equation (34)
and the more approximate system (B8). The exact solution was obtained using the direct
method, and was compared to the approximate solution based on the Fourier=Chandrasekhar
expansion for the eigenvalue problem (34)–(36). Since inertia is absent, Equations (A2)–
(A16) reduce to the simple constant coe�cient Equation (34). Only two modes, given by
Equation (40), are needed in the approximate solution, leading to good agreement with the
exact solution (37), especially in the lower wave number range (Figure 1). Similar marginal
curves were also obtained from the linearization of (B8) (see Figure 2).
Linear stability predicts that the base (Couette) �ow loses its stability via a Hopf bifurcation

as the Deborah number, De, reaches a critical value Dec (for a given wave number). Thus,
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Figure 13. Frequency of oscillation and comparison between theory (continuous lines) and experimental
measurements (symbols) of Muller et al. [1]. The �gure shows the frequency of axial velocity at x= 1

4
as a function of the Deborah number.

unlike inertia induced steady TVF that sets in at a critical Reynolds number, purely elastic
Couette �ow may lose its stability to an oscillatory TVF. This prediction is in agreement
with the linear analysis of Larson et al. [8] and con�rms the experimental observation of
Muller et al. [1]. The conditions for stability of the emerging limit cycle are examined using
the method of multiple scales. It is found that the limit cycle is stable under practical condi-
tions of �ow. Unlike the previous model [1], the present system (B8) leads to good agreement
with experiment. To the author’s knowledge, the results reported in Figures 12 and 13 con-
stitute the closest qualitative and quantitative agreement between theory and the experiment
of Muller et al. [1] to be achieved.
The present theory predicts the sequence of periodic behaviors observed as the Deborah

number is increased: (1) loss of stability of the base �ow to an oscillatory �ow at a critical
Deborah number (Dec=32 as predicted by the model vs 32.3 from experiment), (2) growth of
amplitude of the velocity signature like (De−Dec)1=2, in agreement with asymptotic analysis,
(3) the emergence of higher harmonics in the Fourier spectrum as De is further increased.
A closer quantitative agreement between theory and experiment can hardly be envisaged

given the uncertainty surrounding experimental conditions, on the one hand, and the various
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assumptions that will likely plague any viscoelastic numerical simulation in the nonlinear
range: existence of a spectrum of relaxation times, di�culty in determining (experimentally)
the various rheological parameters for a given constitutive model, the nonlinear dependence
of transport coe�cients on the rate of strain tensor, and so on. Moreover, the sources of
discrepancy between theory and experiment are generally the very limitations of both Newto-
nian and viscoelastic �ow formulations. The lack of a theory capable of predicting the value
of the axial wave number k constitutes a major di�culty. The prediction of the value of k
remains an unresolved issue, and it is usually simply imposed in a theory from experimental
observation. In the case of viscoelastic Taylor–Couette �ow, however, the measurement of k
is extremely di�cult under transient �ow conditions [60; 61]. Another source of discrepancy
stems from end e�ects in the Taylor–Couette apparatus that have been neglected in the present
formulation. The narrow-gap approximation is also a limiting assumption. Inertia e�ects can
also play an in�uential role despite the fact that the experiment was conducted at a vanishingly
small Reynolds number (Re¡10−3). In general, the presence of inertia, no matter how small
it may be, prohibits the base �ow from losing its stability to the overstable mode. Instead,
the base �ow loses its stability �rst to steady (and not oscillatory) TVF since there is always
a �nite range of Re values over which the branches corresponding to steady TVF are stable.
In conclusion, a more appropriate model for highly elastic �uids is derived in the present

work. It includes higher order normal stress terms. It is shown that purely elastic oversta-
bility can only be predicted if the higher order normal stress terms, which were neglected
in the previous formulation [35], are properly accounted for. Particularly, the addition of the
azimuthal normal stress component leads to additional coupling with higher order eigenmodes
that can no longer be neglected. The resulting nonlinear dynamical system involves 20 instead
of six degrees of freedom. Although more cumbersome, and therefore less amenable to elo-
quent algebraic manipulations, the expanded model (B8) is more accurate in its predictions,
and leads to good quantitative agreement with linear stability analysis and experiment.

APPENDIX A: ELIMINATION OF THE Z DEPENCE

Equations (13)–(22) are now reduced upon projecting them onto the modes in the z direction.
In this work, the zeroth- and �rst-order terms, u0i ; p

0 and �0ij, and u
1
i ; p

1 and �1ij (i; j= x; y; z);
respectively, are retained from expansions (27)–(33). Upon substitution of the solutions (27)
–(33) into Equations (13)–(22), and integrating over the interval [0; �=k]; it is found that the
zeroth-order terms of the radial and axial velocity components, subject to boundary condi-
tions (23), vanish, so that

u0x(x; t)= u
0
z (x; t)=0 (A1)

while the pressure coe�cient p0(x; t) is decoupled from the rest of the �ow variables, and
therefore will not be considered any further. The remaining coe�cients are governed by the
following equations:

u1x; x + ku
1
z =0 (A2)

�1xx; x + k�
1
xz + p1; x − �1yy − aRv(u1x; xx − k2u1x) = 0 (A3)
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�0xy; x − aRvu0y; xx =0 (A4)

�1xy; x + k�
1
yz − aRv(u1y; xx − k2u1y ) = 0 (A5)

�1xz; x − k�1zz − kp1 − aRv(u1z; xx − k2u1z ) = 0 (A6)

�0xx; t + u
1
x

(
1
2
�1xx; x + k�

1
xz

)
− k
2
u1z �

1
xx − u1x; x�0xx =−De−1�0xx (A7)

�1xx; t + u
1
x�
0
xx; x − 2u1x; x�0xx =−De−1(�1xx + 2au1x; x) (A8)

�0yy; t +
1
2
(u1x�

1
yy; x − ku1z �1yy)

−2�
[
u0y; x(�

s
xy + �

0
xy) + �

0
xyu

s
y; x +

1
2
(u1y; x�

1
xy − ku1y �1yz)

]

= −De−1�0yy (A9)

�1yy; t + u
1
x�
0
yy; x − 2�[u1y; x(�sxy + �0xy) + �1xy(usy; x + u1y; x)] =−De−1�1yy (A10)

�0zz; t +
1
2
(u1x�

1
zz; x − 3ku1z �1zz) +

1
2
u1z; x�

1
xz =−De−1�0zz (A11)

�1zz; t + u
1
x�
0
zz; x − 2ku1z �0zz =−De−1(�1zz + 2aku1z ) (A12)

�0xy; t +
u1x
2
(�1xy; x + k�

1
yz)−

1
2
(�1xxu

1
y; x − ku1y �1xz)− u0y; x�0xx =−De−1(�0xy + au0y; x) (A13)

�1xy; t + u
1
x�
0
xy; x − �1xx(usy; x + u0y; x)− u1x; x(�sxy + �0xy) =−De−1(�1xy + au1y; x) (A14)

�1xz; t − u1z; x�0xx + ku1x�0zz =−De−1��1xz + a(u1z; x − ku1x)�
(A15)

�1yz; t − u1z; x(�sxy + �0xy)− �1xz(usy; x + u0y; x) + ku1y �0zz =−De−1(�1yz − aku1y ) (A16)

So far, no boundary conditions have been imposed other than the assumption of periodicity
in the z direction. The stick boundary conditions for Equations (A2)–(A16) become:

u1x(x=±1=2; t)= uay (x=±1=2; t)= u1z (x=±1=2; t)=0; a=0; 1 (A17)

APPENDIX B: THE 20-DIMENSIONAL DYNAMICAL SYSTEM

The generalization of solution (40) leads to the following expressions for the �ow �eld:

u1x(x; t) = u
11
x (t)�1(x) + u

12
x (t)�2(x) (B1)
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uay (x; t) = u
a1
y (t)�1(x) + u

a2
y (t)�2(x); a = 0; 1 (B2)

u1z (x; t) = u
11
z (t)�

p
1 (x) + u

12
z (t)�

p
2 (x) (B3)

�aii(x; t) = �
a1
ii (t)�

p
1 (x) + �

a2
ii (t)�

p
2 (x); i= x; y; z (no sum) (B4)

�axy(x; t) = �
a1
xy(t)�

p
1 (x) + �

a2
xy(t)�

p
2 (x); a=0; 1 (B5)

�a� z(x; t) = �
a1
� z (t)�1(x) + �

a2
� z (t)�2(x); �= x; y (B6)

p1(x; t) =p11(t)�
p
1 (x) + p

1
2(t)�

p
2 (x) (B7)

where �p1 (x) and �
p
2 (x) are related to the derivatives of the Chandrasekhar functions, and are

given in Appendix C.
Upon projection of the two modes in Equations (B1)–(B7) onto Equations (A2)–(A16),

and eliminating the pressure coe�cient, one obtains a nonlinear dynamical system with 20◦

of freedom. The system is algebraically involved, and therefore will not be given explicitly
here. Compactly, however, the system may be written as

dxi
dt
=Fi(x1; : : : ; x20;De); i∈ [1; 20] (B8)

where xi(t) is a 20-dimensional vector involving the stress coe�cients:

x1 = �01xx ; x2 = �02xx ; x3 = �11xx ; x4 = �12xx

x5 = �01yy ; x6 = �02yy ; x7 = �11yy ; x8 = �12yy

x9 = �01zz ; x10 = �02zz ; x11 = �11zz ; x12 = �12zz

x13 = �01xy; x14 = �02xy; x15 = �11xy; x16 = �12xy

x17 = �11xz ; x18 = �12xz ; x19 = �11yz ; x20 = �12yz

(B9)

APPENDIX C: INTEGRALS INVOLVING ORTHOGONAL FUNCTIONS

The various constants in the nonlinear dynamical system (B8) originate from the Galerkin
projection of Equations (A2)–(A16) onto modes (B1)–(B7). They are inner products of the
form

〈·=·〉 ≡
∫ 1=2

−1=2
· · dx (C1)

of Chandrasekhar functions

�1(x)=
cosh(�x)
cosh(�=2)

− cos(�x)
cos(�=2)

; �2(x)=
sinh(
x)
sinh(
=2)

− sin(
x)
sin(
=2)

(C2)
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and quantities related to their derivatives

�p1 (x) =
sinh(�x)
cosh(�=2)

+
sin(�x)
cos(�=2)

; �p2 (x)=
cosh(
x)
sinh(
=2)

− cos(
x)
sin(
=2)

(C3)

�pp1 (x) =
cosh(�x)
cosh(�=2)

+
cos(�x)
cos(�=2)

; �pp2 (x)=
sinh(
x)
sinh(
=2)

+
sin(
x)
sin(
=2)

(C4)

The condition of orthogonality and boundary conditions (A17) lead to the following equa-
tions for the constants � and 
:

tanh(�=2) + tan(�=2)= coth(
=2)− cot(
=2)=0 (C5)

Thus, the constants are given by:

C1 = 〈�pp1 =�1〉=−0:5498 C2 = 〈x�2=�1〉=+0:1478
C3 = 〈�p2 =�1〉=+0:4255 C4 = 〈�21 =�1〉=+1:3294
C5 = 〈�22=�1〉=0:9967 C6 = 〈�pp2 =�2〉=−0:7467
C7 = 〈�p1 =�2〉=−0:7065 C8 = 〈�2�p1 =�1〉=−0:6384
C9 = 〈�1�p2 =�1〉=+0:7691 C10 = 〈�2�pp1 =�p1 〉=〈�p1 =�p1 〉=+0:2781
C11 = 〈�p2 �p1 =�p1 〉=〈�p1 =�p1 〉=−0:3349
C12 = 〈�pp2 �1=�p1 〉=〈�p1 =�p1 〉=+0:9839
C13 = 〈�pp1 �1=�p2 〉=〈�p2 =�p2 〉=+0:8953
C14 = 〈�pp2 �2=�p2 〉=〈�p2 =�p2 〉=−0:1819
C15 = 〈�p2 �p2 =�p2 〉=〈�p2 =�p2 〉=+0:3638
C16 = 〈�21 =�p2 〉=〈�p2 =�p2 〉=+1:0299
C17 = 〈�p1 �p1 =�p2 〉=〈�p2 =�p2 〉=−0:2467
C18 = 〈�1�2=�p1 〉=〈�p1 =�p1 〉=−1:1609
C19 = 〈�pp1 �p2 =�1〉=〈�1=�1〉=−0:6385
C20 = 〈�pp2 �p1 =�1〉=〈�1=�1〉=+0:5136
C21 = 〈�pp1 �p1 =�2〉=〈�2=�2〉=+0:1532
C22 = 〈�pp2 �p2 =�2〉=〈�2=�2〉=−0:1358

Two additional constants are also introduced, namely

�1 = k2 − �2C1; �2 = k2 − 
2C6
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APPENDIX D: DERIVATION OF THE CHARACTERISTIC EQUATION

The �rst step in the derivation of the characteristic Equation (43) consists of substituting the
velocity and stress coe�cients from Equation (42) into system (B8). Upon neglecting
the nonlinear terms, one immediately notes the decoupling between 
u0iy ; 
�

0i
xx; 
�

0i
yy; 
�

0i
zz ; 
�

0i
yz and

the remaining coe�cients. Since the former lead to uninteresting transients, they will not be
considered any further. The remaining stress coe�cients are cast in terms of the velocity
components, leading to:


�11xx =−2a�D 
u11x (D1)


�12xx =−2a�D 
u12x (D2)


�11yy =−2a�DDe[DDe(1 + 2D) 
u11x − (1 +D) 
u11y ] (D3)


�12yy =−2a
DDe[DDe(1 + 2D) 
u12x − (1 +D) 
u12y ] (D4)


�11zz =+2a�D 
u
11
x (D5)


�12zz =+2a�D 
u
12
x (D6)


�11xy = a�D[De(1 + 2D) 
u
11
x − 
u11y ] (D7)


�12xy = a
D[De(1 + 2D) 
u
12
x − 
u12y ] (D8)


�11xz =
aD
k
(k2 + C1�2) 
u11x (D9)


�12xz =
aD
k
(k2 + C6
2) 
u12x (D10)


�11yz =−aD
k

{De[Dk2 + (1 +D)C1�2] 
u11x − k2 
u11y } (D11)


�12yz =−aD
k

{De[Dk2 + (1 +D)C6
2] 
u12x − k2 
u12y } (D12)

One now seeks the expressions relating the x and y velocity coe�cients, which are ob-
tained by substituting for the xy and yz coe�cients from (D7), (D8), (D11) and (D12) into
Equation (B33). This leads to:


u11y =
D2De
Rv+D


u11x (D13)


u12y =
D2De
Rv+D


u12x (D14)
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If Equations (D1)–(D6), (D9) and (D10) are substituted together with (D13) and (D14)
into Equations (B29) and (B30), then one obtains the following system for 
u11x and 
u12x :

[Rv(�4 + k4 − 2C1�2k2) +D�21] 
u11x +
2
C3k2D2�De2

Rv+D
[D2 + Rv(1 + 2D)] 
u12x =0

(D15)

2�C7k2D2�De2

Rv+D
[D2 + Rv(1 + 2D)] 
u11x + [Rv(


4 + k4 − 2C6
2k2) +D�22] 
u12x =0
(D16)

For a nontrivial solution, this system leads to the desired characteristic Equation (43).

APPENDIX E: THE AMPLITUDE EQUATION

In this Appendix, the complex coe�cients, �1 and �2, in the amplitude Equation (49):

@A
@T
= ��1A+ 4�2A2A∗ (E1)

are explicitly given in terms of the Jacobian matrix components, Fi; j, its right and left eigen-
vectors, pi and qi, and related quantities. Thus, one has [64]

�1 = qiBijpj; �2 = 2qiFi; jk(2pjrk + p∗
j sk) (E2)

where Bij; ri and si must satisfy, respectively, the following relations:

Bijyj=Fi;De; Fi; jrj=−1
2
Fi; jkpjp∗

k ; (2i!�ij − Fi; j)sj= 12Fi; jkpjpk (E3)

It is clear from system (B8) that since the Fi’s are quadratic in the stress coe�cients, then
the Bij’s are constants; the nonzero components being given by:

B1 1 = B2 2 =
1
De2

B3 3 =
1
De2

(1 + 2a�a3); B3 8 =
2
De2

a�a8; B3 11 =
2
De2

a�a11

B3 17 =
2
De2

a�a17

B4 4 =
1
De2

(1 + 2a
b4); B4 7 =
2
De2

a
b7; B4 12 =
2
De2

a
b12

B4 18 =
2
De2

a
b18

B5 5 = B6 6 =B7 7 =B8 8 =B9 9 =B10 10 =
1
De2
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B11 11 =
1
De2

(1− 2a�a11); B11 3 =− 2
De2

a�a3; B11 8 =− 2
De2

a�a8

B11 17 =− 2
De2

a�a17

B12 12 =
1
De2

(1− 2a
b12); B12 7 =− 2
De2

a
b7; B12 4 =− 2
De2

a
b4

B12 18 =− 2
De2

a
b18

B13 13 = B14 14 =
1
De2

(
1 +

1
Rv

)

B15 15 =
1
De2

(1 + a�c15); B15 19 =
1
De2

a�c19

B16 16 =
1
De2

(1 + a
d16); B16 20 =
1
De2

a
d20

B17 3 =− a
De2k

(k2 + �2C1)a3; B17 8 =− a
De2k

(k2 + �2C1)a8

B17 11 =− a
De2k

(k2 + �2C1)a11; B17 17 =
1
De2

[
1− a

k
(k2 + �2C1)a17

]

B18 4 =− a
De2k

(k2 + 
2C6)b4; B18 7 =− a
De2k

(k2 + 
2C6)b7

B18 12 =− a
De2k

(k2 + 
2C61)b12; B18 18 =
1
De2

[
1− a

k
(k2 + 
2C6)b18

]

B19 15 =− 1
De2

akc15; B19 19 =
1
De2

(1− akc19)

B20 16 =− 1
De2

akd16; B20 20 =
1
De2

(1− akd20)

where the following abbreviations were introduced:

a3 =−a11 =− �C1k2

aRv(�4 + k4 − 2�2k2C1) ; a8 =
C3k2

aRv(�4 + k4 − 2�2k2C1)

a17 − k(�2C1 + k2)
aRv(�4 + k4 − 2�2k2C1)

b4 =−b12 =− 
C6k2

aRv(
4 + k4 − 2
2k2C6) ; b7 =
C7k2

aRv(
4 + k4 − 2
2k2C6)

b18 − k(
2C6 + k2)
aRv(
4 + k4 − 2
2k2C6)
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c15 − �C1
�1aRv

; c19 − k
�1aRv

d16 − 
C6
�2aRv

; d20 − k
�2aRv
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